Microscopic Optical Projection Tomography In Vivo
نویسندگان
چکیده
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms.
منابع مشابه
Artifact-free 3D Reconstruction for Optical Projection Tomography
Optical Projection Tomography (OPT) is a recently developed implementation of computed tomography (CT) techniques at optical frequencies. A series of 2D optical projections through a sample are generated at varying orientations, from which the 3D structure of the sample can be computationally reconstructed. OPT is especially suitable for samples from about 0.5 mm to 15 mm in size, which fills a...
متن کاملCorrection for specimen movement and rotation errors for in-vivo Optical Projection Tomography
The application of optical projection tomography to in-vivo experiments is limited by specimen movement during the acquisition. We present a set of mathematical correction methods applied to the acquired data stacks to correct for movement in both directions of the image plane. These methods have been applied to correct experimental data taken from in-vivo optical projection tomography experime...
متن کاملIn vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography.
We introduce flow optical projection tomography, an imaging technique capable of visualizing the vasculature of living specimens in 3-D. The method detects the movement of cells in the bloodstream and creates flow maps using a motion-analysis procedure. Then, flow maps obtained from projection taken at several angles are used to reconstruct sections of the circulatory system of the specimen. We...
متن کاملIn-vivo Optical Tomography of Small Scattering Specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster
Even though in vivo imaging approaches have witnessed several new and important developments, specimens that exhibit high light scattering properties such as Drosophila melanogaster pupae are still not easily accessible with current optical imaging techniques, obtaining images only from subsurface features. This means that in order to obtain 3D volumetric information these specimens need to be ...
متن کاملIn vivo fluorescence lifetime optical projection tomography
We demonstrate the application of fluorescence lifetime optical projection tomography (FLIM-OPT) to in vivo imaging of lysC:GFP transgenic zebrafish embryos (Danio rerio). This method has been applied to unambiguously distinguish between the fluorescent protein (GFP) signal in myeloid cells from background autofluorescence based on the fluorescence lifetime. The combination of FLIM, an inherent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011